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Introduction
Neural networks serve as the foundational architecture of Deep Learning.
Inrocucion to Al Neural Their structure and operation are inspired by the biological neurons

e found in the human brain, hence the term 'neural’.
This interconnected structure allows neural networks to learn complex

patterns and relationships in the data.
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What is an ANN?

Structure: Composed of neurons (nodes)

Inrocucion to Al Neural arranged in layers (input, hidden, and
Networks (ANN)
output).
Layers:
In_put Layer: Takes input (_1ata
Hidden Layers: Intermediate layers that
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process inputs through weights and biases.

Output Layer: Produces the final output.
Activation Functions: Functions applied
to the weighted sum of inputs to introduce
non-linearity (e.g., ReLU, sigmoid). Architecture of ANN

Basic Working Principle

ANNSs learn to map input to output by
adjusting weights and biases through
training.
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Components of NN

Neurons (Nodes) Bias
Weights

Biases

Activation Function
Loss Function
Gradient Descent Inputs

Learning Rate Components of ANN

Introduction to Artificial Neural
Networks (ANN)

Activation Output
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g=g(w-x+b)
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Activation Functions
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A loss function, also known as a cost function or objective function,
rsctons i s measures the difference between the predicted outputs of a neural
network and the actual target values.

It is essentially a quantification of the error in value estimation.
Minimizing the loss function results in high prediction accuracy.

Y (ho(a) - o)’ 8y

Mean Square Error Linear Regression
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Forward Propagation

Introduction to Artificial Neural
Networks (ANN)

@\ @\
‘Wnrx +pl1) @ o (z0) ‘W[zl,,m L L.[Zl@ o (z12) ‘%(? - Y)z‘
—p — — — —
Ve Ve

MD Karimulla Haque  Basics of Neural Networks and Their Application in Solving Differential Equations ~ November 8, 2024 7/37


https://mdkarimullahaque.github.io/

Introduction to Artificial Neural
Networks (ANN)

A for sc g ODE and PDE
Why Use ANN for ODE and PDE
NN Model
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Back Propagation for Weight
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Introduction to Artificial Neural
Networks (ANN)
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Back Propagation for Bias

Introduction to Artificial Neural
Networks (ANN)
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Back Propagation

Introduction to Artificial Neural
Networks (ANN)
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Gradient Descent

Introduction to Artificial Neural
Networks (ANN)

and PDE
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Introduction to Artificial Neural
Networks (ANN)

ANN for solving O

Why Use ANN fo

Learning Rate
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Too high

A small learning rate
requires many updates
before reaching the
minimum point
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The optimal learning
rate swiftly reaches the
minimum point
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Too large of a learning rate
causes drastic updates
which lead to divergent
behaviors
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Introduction to Artificial Neural
Networks (ANN)

A for sc g ODE and PDE
Nhy Use ANN for ODE and PDE'
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Training NN

Initialisation

R Forward propogation
Back propogation
Gradient Descent

(Loading Video)
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Traditional Methods

ANN for solving ODE and PDE Analytical MethOds
Examples
Separation of Variables: Technique to solve differential equations by separating
the variables and integrating.
Integrating Factors: Method to solve linear first-order differential equations by
multiplying by an integrating factor.
Numerical Methods
Examples
Euler’s Method: Simple numerical procedure for solving ODEs by approximating
solutions at discrete points.
Runge-Kutta Methods: More accurate numerical methods for solving ODEs.
Finite Difference Method: Numerical technique for solving PDEs by
approximating derivatives with finite differences.
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Why Use ANN for ODE and PDE?

Why Use ANN for ODE and PDE?

Advantages
Flexibility: The method is general and can be applied to single ODE, system
of ODE’s and PDE defined on orthogonal box boundaries.
Parallel Processing: The method can also be efficiently implemented on
parallel architecture.
Handling Complexity: The required number of model parameters is far less
than any other solution technique.
Closed Form: An NN-based solution of a DE is differentiable and is in a
closed analytic form that can be used in subsequent calculations.
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Paper Present

Why Use ANN for ODE and PDE?

We will now present the implementation of the paper ANN for solving
ODE and PDE by Lagaris, I.E., Likas, A. and Fotiadis, D.I. | IEEE
Journals Magazine | IEEE Xplore. Available at:
https://ieeexplore.ieee.org/document/712178.

MD Karimulla Haque  Basics of Neural Networks and Their Application in Solving Differential Equations ~ November 8, 2024 18/37


https://mdkarimullahaque.github.io/

Methodology

Wiy Use ANN for ODE and PDE? ANNSs can be used to approximate solutions to differential equations.
A trial solution is written as a sum of two parts:

The first part satisfies the boundary or initial conditions and contains no
adjustable parameters.

The second part involves a feedforward neural network with adjustable
weights.

By construction, the boundary conditions are satisfied, and the network
is trained to satisfy the differential equation.

Applicability ranges from single ODEs to systems of coupled ODEs and
PDEs.
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Implementation

Why Use ANN for ODE and PDE?

Assume a trial form of the solution: W(X) = A(X) + F(X, N(X, p))

N(X, p) is the feedforward NN with parameters p.

The second term F is constructed so as not to contribute to the BC’s.
Learn the parameters to approximately solve the differential equation.
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Description of the Methods

Consider general differential equation: G(X, W(X), V¥(X), V2U(X)) = 0
where X € D

N, Now we will use collocation method to solve the above differential
equation i.e.,

G(%, V(X B), VV(X;, B), V2W(X,,B)) =0, VX € D

Now we need to calculate

mln Z Xlawt Xlap) vwf(xh ) v \Ut(X,,p)))z

xeb

Construct a trial solution which satisfy BC(s) as
Vi(X) = A(X) + F(X,N(x,P))

where we will choose A(X) as it satisfies boundary conditions and F as
not to contribute to the BC(s).
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NN Model

Input in i th hidden unitis z; = > 4 wjx; + u;
Output in i th hidden unit is o(z;)
Final output of the NN is N = > . vio(2)

wj; denotes the weight from the input unit j to the hidden unit /, v; denotes
the weight from the hidden unit i to the output, u; denotes the bias of
hidden unit i and ¢(z) is the sigmoid function.

Input layer Hidden layer Output layer

3 input units, one hidden layer with H sigmoid umits and a linear output unit
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Method for first-order ODE

Consider the first order ODE

Vethod for rstrder O0E with x € [0,1] and the IC W(0) = A
A trial solution is
Vi(x) = A+ xN(x,p)

where N(x, p) is the output of a feedforward NN with one input unit for x
and weights p
Therefore,

dV(x)

ax

We need to minimized the error quantity,

_ 2
Elp] = Z { dllic;)((x,) - f(XhWt(Xi))} . X €][0,1]

dN(x, p)
ax

— N(x,B) + x
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Problem 1

Problem 1 with IVP

Solve the Single Ordinary Differential Equation

dv 1+3x2 — 3 2 143 _
dx+(X+1+J§+XXs)“’*X +2X + X 1++X+XX3 with W(0) = 1 and x € [0, 1].
2

The analytical solution is W(x) = 1+X+X3 + x2
The trial solution is W¢(x) = 1 + xN(x, p)

Comparison between NN solution and Exact solution

4.0 4 —— NN solution
«  Exact solution

log
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x
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Problem 2 with IVP

Solve the Single Ordinary Differential Equation 2¥ + 1w = e~(8)cos(x)
with W(0) =0 and x € [0, 2].

The analytical solution is W,(x) = e~(5)sin(x)

The trial solution is W;(x) = xN(x, p)

Problem 2

Comparison between NN solution and Exact solution

—— NN solution
- Exact solution
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Method for second-order ODE

Consider the second order ODE

a2V (x) _¢ (x,\ll, d\lf(x))

dx? dx
with x € [0, 1]
A trial solution for the initial conditions W(0) = A and (%) v(0)=A'is
Wi(x) = A+ A'x + xN(x, p)

where N(x, p) is the output of a feedforward NN with one input unit for x
and weights p
A trial solution for the two point Dirichlet BC w(0) = Aand ¥(1) = Bis

Vi(x) = A(1 — x) + Bx + x(1 — x)N(x, p)
We need to minimized the error quantity for both cases,

2 , ) 2
1) = - { i~ (v D) L e o)

i

Method for second-order ODE
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Problem 3 with IVP

Given the differential equation ¥ + 1 9% + v = — 1% cos(x) with
w(0)=0, (£)w(0)=1andx € [0,2].

The analytical solution is W(x) = e~(5)sin(x)

The trial solution is W;(x) = x + x2N(x, p)

Problem 3
Comparison between NN solution and Exact solution

—— NN solution

= Exact solution
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Problem 3 with BVP

Given the differential equation €% + 19¥ | v = &% cos(x) with

W(0) =0, w(1) = sin(1)e~(5) and x € [0,1].
The analytical solution is  W(x) = e*<f>sin( X)
The trial solution is:  W(x) = xsin(1)e~(s) + x(1 — x)N(x, p)

Problem 3

Comparison between NN solution and Exact solution

—— NN solution
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Method for systems of K first-order ODEs

Consider the systems of first order ODEs

av;
dXI — f,‘(X,W1,\U27"' 7WK)
withi=1,--. K and the ICs V;(0) = A;

A trial solution is
oons Vi (x) = A + xNi(x, py)

where N;(x, p;) is the output of a feedforward NN with one input unit for x
and weights p; fori=1,--- | K

We need to minimized the error quantity,
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Problem 4 with IVP

Consider the system of two coupled first order Ordinary Differential
Equations %t = cos(x) + W2 + W, — (1 + x2 + sin?(x))

2 — 2x — (1 + x?)sin(x) + W1 W, with w1(0) = 0, W,(0) =1 and
x € [0,3].

The analytical solutions are Wy, (x) = sin(x), Wa(x) =1+ x?
The trial solutions are Wy (x) = xNi(x, p1), Wi (x) =1+ xNo(x, p2)

Problem 4 Comparison between NN solution and Exact solution

104 « Exact solutionl
—— NN solutionl -~
2N
e Exact solution2 ™
84 — NN solution2 0005 |
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Method for Single PDE with Dirichlet BC

Consider only two-dimensional problems. For example, the Poisson
equation
PY(x.y) , PV(x.y)

Ox? dy?
with Dirichlet boundary conditions
V(0,y) =fo(y), v(1,y) =fi(y), V(x,0)=go(x), ¥(x,1) = g1(x)
A trial solution is
Wi(x,y) = A(x,y) + x(1 = x)y(1 = y)N(x, y. )

where A(x,y) = (1 — x)fo(y) + X (y) + (1 — ¥){go(x) — [(1 — x)g0(0) +
xgo(1]} + y{g1(x) — [(1 = x)91(0) + xg1(1)]} and N(x, y, p) is the output
of a feedforward NN with two input units for x, y and weights p

We need to minimized the error quantity,

2 o 2
Elp) = Z{au;;(gy, 8w6(;;’y’)—f(x/,yf)}, (i, yi) € [0,1]x[0, 1]
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Problem 5 with Dirichlet BC

Solve the Partial Differential Equation V2V (x, y) = e X(x — 2 + y3 + 6y)

ntroduction to Artificial Neura

SR ie., 54 + 24 = e7*(x — 2+ y® + 6y) with x, y € [0,1] and with Dirichlet
s boundary conditions
S w0y =y (1) = T u(x,0) = xeF, W(x, 1) = e (1 + x)
Nebod o sasrs o O The analytical solution is W(x, y) = e *(x + y°)
Wetod for oystems o The trial solution is W¢(x,y) = A(x, y) + x(1 — x)y(1 — y)N(x, y,P)
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Method for Single PDE with mixed BC

Again for example, consider the Poisson equation
92V (x, y) 82\U(x ¥)
Ox? dy?
with mixed boundary conditions

W(0,y) = fo(y), W(1,y) =Ffi(y), W(x,0)=go(x), () = g1 (x)
A trial solution is
ON(x, 1, p)

Vi(x,y) = Blx.y) 4 x(1 = x)y [N(x.y.B) = Nx.1.5) = 20

where B(x, y) = (1 = x)fo(y) + xf(y) + go(x) — [(1 — x)90(0) + xgo(1)] +
y{g1(x) — [(1 = x)91(0) + xg1(1)]} and N(x, y, p) is the output of a
feedforward NN with two input units for x, y and weights p

We need to minimized the error quantity,

2 2 o 2
Elp) = Z{a\ua;(gy, aw;;;’y’)—f(xf,yf)}, (i, yi) € [0,1]x[0, 1]

=f(x,y),  (xy)€l0,1] x[0,1]

Problem 5
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Problem 6

Problem 6 with mixed BC

Solve the Partial Differential Equation V2W(x, y) = (2 — n2y?)sin(rx)
i.e., %27‘5 + %27"2’ = (2 — w2y?)sin(rx) with x, y € [0, 1] and with mixed
boundary conditions

V(0,y) =0, W(1,y) =0, ¥(x,0) =0, LW(x,1) = 2sin(rx)

The analytic solution is Wa(x, y) = y2sin(rx)

The trial solution is

Wi(x,y) = B(x,y) + x(1 = x)y [N(x, y.B) = N(x,1,B) — 2NG12)]

. Accuracy of the computed solution at the training points Accuracy of the computed solution at the test points
Comparison between NN solution and Exact solution at the test points
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Problem 7 with mixed BC

Solve the Non-linear Partial Differential Equation

VZ\U(X Y) + ¥ (X, y) 5V (x, y) = sin(rx)(2 — w2y? + 2y°sin(rx))

e, 5% + % + Wiy = sin(rx)(2 — x2y? + 2y3sin(wx)) with x, y € [0,1]
and with mixed boundary conditions

v(0,y) =0, W(1,y) = 0,¥(x,0) = 0, ZW(x,1) = 2sin(rx)

The analytic solution is W4(x, y) = y?sin(rx)

The trial solution is

Wi(x,y) = Bx,y) + x(1 = x)y [NOx, v, B) = N(x, 1, ) — 2M512)]

Accuracy of the computed solution at the training points Accuracy of the computed solution at the test points
Comparison between NN solution and Exact solution at the test points

Problem 7
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Pictures were taken from Google Images.

The plots were generated using the implementation available at:
https://github.com/mdkarimullahaque/ANN_ODE_PDE
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