GLIMPSES OF CRYPTOGRAPHY

(....) . T.

me. ?

MD Karimulla Haque

Introduction

- We need information to share/express our ideas
- Some information are valuable. Hence we need protection
- One of protection method is Cryptography
- Cryptography is used in ATM, Email-Password, E-Payment, E-Commerce, Electronic Voting, Defense Services, Securing Data, Access Control etc.

What is Cryptography?

- Cryptography is the practice and study of hiding information
- It is a branch of both Mathematics and Computer science

Basic Terminology

- Plaintext original message
- Ciphertext coded message
- Encipher (Encrypt) converting Plaintext to Ciphertext
- Decipher (Decrypt) reconverting Ciphertext to Plaintext
- Cipher algorithm for performing Encryption or Decryption
- Key unique info used in cipher known only sender and receiver

Caesar cipher

- One of the earliest known example of substitution cipher
- Said to have been used by Julius Caesar to communicate with his army (secretly)
- Each character of a plaintext message is replaced by *n* position down in the alphabet

Example

- First row denotes the plaintext
- Second row denotes the ciphertext
- Ciphertext is obtain by shifting the original letter by *n* position to the right
- In this example, it is shifted by 3 to the right
 - A becomes D
 - B becomes E
 - X becomes A and so on...

Suppose the following plaintext is to be encrypted ATTACK AT DAWN • By shifting each letter by 3 to the right. • The resulting ciphertext would be **DWWDFN DW GDZQ**

А	В	С	D	E	 	Х	Y	Z
D	E	F	G	Н	 	А	В	С

- One could shift other than 3 letters apart
- The offset (Number of shift) is called key
- Decryption process
 - Given that the key is known, just shift back *n* letter to the left
- Example:
 - Ciphertext:

WJYZWS YT GFXJ

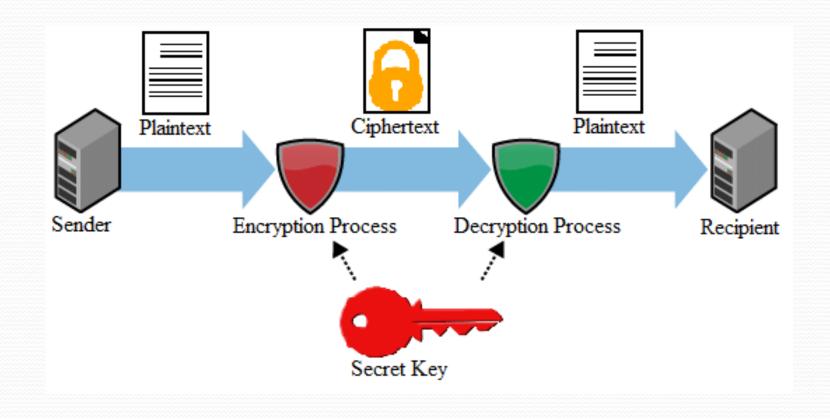
- Key used 5
- Plaintext:

RETURN TO BASE

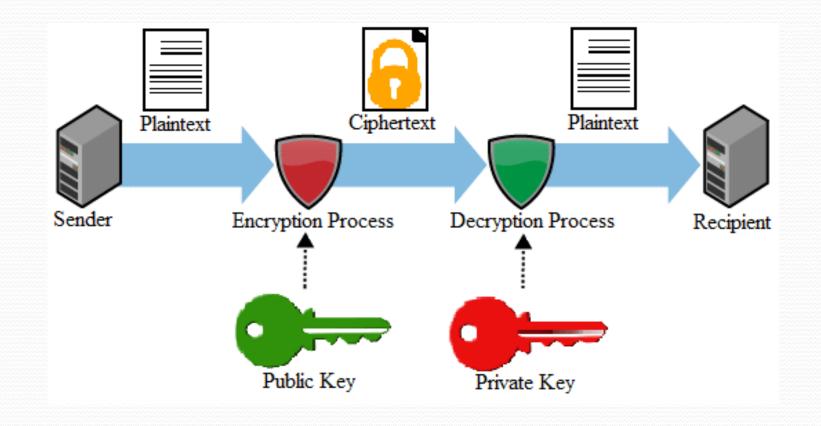
А	В	С	D	E			Х	Y	Z
V	W	Х	Y	Z	•••	•••	S	Т	U

Math behind this

- Can be represented using modular arithmetic
- Assume that:
 - A= 0, B= 1, C= 2, ..., Y= 24, Z= 25
- Encryption process can be represented as: $E(x) = (x + k) \pmod{26}$
- Where
 - *x* is the plaintext
 - *k* is the number of shift
 - There are 26 letters in the alphabet (English alphabet)


Math behind this

- Can be represented using modular arithmetic
- Assume that:
 - A= 0, B= 1, C= 2, ..., Y= 24, Z= 25
- Decryption process can be represented as: $D(y) = (y - k) \pmod{26}$


• Where

- *y* is the ciphertext
- *k* is the number of shift
- There are 26 letters in the alphabet (English alphabet)

Symmetric Ciphers

Asymmetric Ciphers

RSA

- The most common public-key algorithm is the RSA cryptography, named for its inventors (Rivest, Shamir and Adleman)
- RSA do Encryption/Decryption/Key Generation
- Two types of keys
 - Private key (to be kept confidential)
 - Public key (known to everyone)

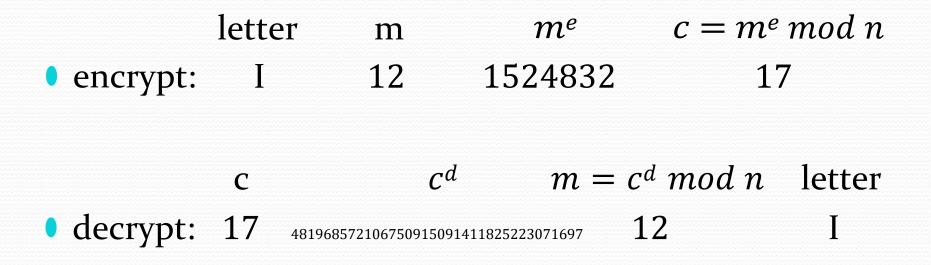
Inventers of RSA

• Ronald L. Rivest, Adi Shamir and Leonard Adleman

Choosing keys

- Choose two large prime numbers *p*, *q* (e.g., 1024 bits each)
- Compute n = pq
- $Z_n' = Z_{pq}'$ contains all integers in the range [1, pq) that are relatively prime to both p and q
- Size of Z_n' is $\emptyset(pq) = {(p-1)(q-1) = z \text{ (say)}}$
- Choose *e* (with 1 < *e* < *z*) that has no common factors with *z* (i.e., *e* and *z* are relatively prime ; gcd(*e*, *z*) = 1)
- Choose *d* such that ed 1 is exactly divisible by *z* (i.e., *ed mod z* = 1; ed = 1 + kz, *k* is an integer)
- Public key is (*n*, *e*)
- Private key is d

Encryption


- To encrypt plaintext,
- a given message M, where $M \in \mathbb{Z}_n \{0\}, 0 < M < n$
- Compute $C = M^e \mod n$
 - (i.e., remainder when *M^e* is divided by n)

Decryption

- To decrypt received ciphertext,
- a given ciphertext C, where $C \in \mathbb{Z}_n \{0\}$
- compute $M = C^d \mod n$
 - (i.e., remainder when *C^d* is divided by n)

Example

- Receiver chooses p = 5, q = 7. Then n = 35, z = 24
 e = 5 (so that e and z are relatively prime)
- d = 29 (so that ed 1 exactly divisible by z)

RSA recommendation

- The number of bits for n should be at least 1024. This means that n should be around 2¹⁰²⁴ or, 309 decimal digits.
- The two primes p and q must each be at least 512 bits
- The values of p and q should not be very close to each other.
- Both p-1 and q-1 should have at least one large prime factor.
- The ratio p/q should not be close to a rational number with a small enumerator and denominator.
- The modulus n must not be shared.

RSA numbers

- RSA-260 has 260 decimal digits (862 bits) has not been factored so far
- RSA-2048 has 617 decimal digits (2048 bits). It is the largest of the RSA numbers and carried the largest cash prize for its factorization, \$200,000

References

- Cryptanalytic Attacks on RSA by Song Y. Yan
 Introduction toCryptography by Hans Delfs & Helmut Knebl
- Cryptography Theory and Practice by Douglas R. Stinson
- Pictures were taken from Google Images.

Thank You

O Any query...?*O* Email: *mdkarimullahaque@gmail.com*