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Example of Areas Where Quantum Computers Excel
RSA Cryptosystem: RSA is a widely-used public-key cryptosystem that
relies on the difficulty of factoring large numbers as the foundation of its
security. Classical computers would need an impractical amount of time
to break RSA encryption by factoring large prime numbers.

Shor’s Algorithm: Shor’s Algorithm is a quantum algorithm that can
efficiently factor large numbers in polynomial time, making it much faster
than any classical algorithm. This breakthrough algorithm is the primary
reason why quantum computers pose a threat to RSA encryption.

Classical vs Quantum: For classical computers, factoring a large number,
such as those used in RSA keys (often hundreds of digits), is computationally
infeasible and would take billions of years to break with current technology. In
contrast, a quantum computer using Shor’s Algorithm could factor these
numbers in a matter of seconds or minutes.

For more details on Cryptography and RSA:
https://mdkarimullahaque.github.io/talks/Glimpses_of_Cryptography.pdf
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Cost of Building a Quantum Computer

Hardware: Quantum computers require special
environments to operate, such as ultra-low
temperatures (near absolute zero) for certain
types of qubits like superconducting qubits.

Development: Quantum computing is still in the
experimental phase, meaning significant resources
are required to build and maintain these systems.
Overall, the cost of building a quantum computer is
in the range of tens of millions of dollars, and
the technology is still in a nascent stage, meaning
the cost could remain high for the next several
years until it matures.

Figure: IBM Q quantum
computer
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Basic Terminology

Qubits

If a quantum system admits two different states, it is called a qubit
If a quantum system admits three different states, it is called a qutrit
If it takes d different states, it is called a qudit

Ket: |∗⟩, generally it’s a column vector.
Bra: ⟨∗| = |∗⟩†, generally it’s a row vector.
Bra-Ket: ⟨∗||∗⟩ or, ⟨∗|∗⟩
Ket-Bra: |∗⟩⟨∗|
|∗⟩ ⊗ |∗⟩ = |∗⟩|∗⟩ = | ∗ ∗⟩

Vector Notations: |0⟩ =
(

1
0

)
and |1⟩ =

(
0
1

)
, standard Qubits.

⟨0| =
(
1 0

)
and ⟨1| =

(
0 1

)
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Dirac notation

⟨a||b⟩ = ⟨a|b⟩ =

{
1 if a = b
0 if a ̸= b

|a⟩⟨b| has a 1 in the (a,b)-entry and 0 for all other entries.
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Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
and σz =

(
1 0
0 −1

)
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Tensor Product

Let A be an m × n matrix and B be a p × q matrix then

A ⊗ B =


a11B a12B · · · a1nB
a21B a22B · · · a3nB

...
...

. . .
...

am1B am2B · · · amnB


is an (mp)× (nq) matrix.
Example:

σx ⊗ σz =

(
0 1
1 0

)
⊗
(

1 0
0 −1

)
=

(
0 σz
σz 0

)
=


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0


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Superposition

It is convenient to assume the vector |0⟩ corresponds to the classical
value 0, while |1⟩ to 1 in quantum computation. Moreover it is possible for
a qubit to be in a superposition state:

|ψ⟩ = α|0⟩+ β|1⟩, where α, β ∈ C
The fundamental requirement of quantum mechanics is that if we make
measurement on |ψ⟩ to see whether it is in |0⟩ or |1⟩ , the outcome will be
0 (1) with the probability |α|2(|β|2),
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The fundamental requirement of quantum mechanics is that if we make
measurement on |ψ⟩ to see whether it is in |0⟩ or |1⟩ , the outcome will be
0 (1) with the probability |α|2(|β|2),
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Bloch Sphere

Definition: Quantum analog of
classical bits; exists in
superposition states
|ψ⟩ = α|0⟩+ β|1⟩, where
α, β ∈ C
= cos( θ2)|0⟩+ eiφsin( θ2)|1⟩,
where |α|2 + |β|2 = 1.

Let, α = r1eiθ1 and β = r2eiθ2

Then, r2
1 + r2

2 = 1 and θ1 = θ2 +φ
Take, r1 = cos( θ2), r2 = sin( θ2) Figure: The Bloch sphere is a geometrical

representation of a qubit. Qubits can take as value
each point on the surface described by the two
angles φ and θ. The pole points are |0⟩ or |1⟩.
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Entangled States

A state |ψ⟩ ∈ H written as a tensor product of two vectors as
|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ (where |ψa⟩ ∈ Ha) is called a separable state or a
tensor product state.

Let us consider a state |ψ⟩ = 1√
2
(|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩) of two separated

electrons. Suppose |ψ⟩ may be decomposed as
|ψ⟩ = (c1|0⟩+ c2|1⟩)⊗ (d1|0⟩+ d2|1⟩) =
c1d1|0⟩ ⊗ |0⟩+ c1d2|0⟩ ⊗ |1⟩+ c2d1|1⟩ ⊗ |0⟩+ c2d2|1⟩ ⊗ |1⟩
However this decomposition is not possible since we must have
c1d2 = c2d1 = 0, c1d1 = c2d2 = 1√

2
simultaneously, and it is clear that the

above equations have no common solution. Therefore the state |ψ⟩ is not
separable.
Such non-separable states are called entangled in quantum theory.
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Quantum Computation

we have introduced qubits to store information.

it is time to consider operations acting on them

If they are simple, these operations are called gates, or more precisely
quantum gates

More complicated quantum circuits are composed of these simple gates.
A collection of quantum circuits for executing a complicated quantum algorithm

a quantum algorithm, is a part of a quantum computation.
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Continue...

A quantum computation is a collection of the following three elements:

A register or a set of registers

A unitary matrix U, which is taylored to execute a given quantum algorithm

Measurements to extract information we need.
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Quantum Gates

Let us consider the gate I whose action on the basis vectors are defined
by I : |0⟩ → |0⟩, |1⟩ → |1⟩

The matrix expression of this gate as

I = |0⟩⟨0|+ |1⟩⟨1| =
(

1 0
0 1

)
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NOT, shift gate
Similarly we introduce

X : |0⟩ → |1⟩, |1⟩ → |0⟩

Y : |0⟩ → −|1⟩, |1⟩ → |0⟩

Z : |0⟩ → |0⟩, |1⟩ → −|1⟩

whose matrix representations are

X = |1⟩⟨0|+ |0⟩⟨1| =
(

0 1
1 0

)
= σx

Y = |0⟩⟨1| − |1⟩⟨0| =
(

0 −1
1 0

)
= −iσy

Z = |0⟩⟨0| − |1⟩⟨1| =
(

1 0
0 −1

)
= σz

input U output
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CNOT (controlled-NOT) gate

It is a two-qubit gate

The gate flips the second qubit (the target qubit) when the first qubit (the
control qubit) is |1⟩, while leaving the second bit unchanged when the first
qubit state is |0⟩.

Let |00⟩, |01⟩, |10⟩, |11⟩ be a basis for the two-qubit system.

|00⟩ =


1
0
0
0

 , |01⟩ =


0
1
0
0

 , |10⟩ =


0
0
1
0

 and |11⟩ =


0
0
0
1


UCNOT : |00⟩ → |00⟩, |01⟩ → |01⟩, |10⟩ → |11⟩ and |11⟩ → |10⟩ In the
following, we use the standard basis vectors with components
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whose matrix representation is

UCNOT = |00⟩⟨00|+ |01⟩⟨01|+ |11⟩⟨10|+ |10⟩⟨11|

= |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ X =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



The action of CNOT on the input state |i⟩|j⟩ is written as |i⟩|i ⊕ j⟩ ,where
i ⊕ j is an addition mod 2,
that is, 0 ⊕ 0 = 0,0 ⊕ 1 = 1,1 ⊕ 0 = 1 and 1 ⊕ 1 = 0.

control bit

target bit
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Toffoli gate or, CCNOT(Controlled-Controlled-NOT) gate

The explicit form of the CCNOT gate is

UCCNOT = (|00⟩⟨00|+ |01⟩⟨01|+ |10⟩⟨10|)⊗ I + |11⟩⟨11| ⊗ X

control bit 1

control bit 2

target bit
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Hadamard gate

UH : |0⟩ → |+⟩ = 1√
2
(|0⟩+ |1⟩), |1⟩ → |−⟩ = 1√

2
(|0⟩ − |1⟩)

whose matrix representation is

UH = 1√
2
(|0⟩+ |1⟩)⟨0|+ 1√

2
(|0⟩ − |1⟩)⟨1| = 1√

2

(
1 1
1 −1

)

input H output
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Arithmetic Circuit

Figure: Wires store numbers and gates represent arithmetic operations, such as addition (+) and
multiplication (*)
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Example of Quantum Circuit

|0⟩ H S H T 1+i
2 |0⟩+ 1√

2
|1⟩

where H =

(
1√
2

1√
2

1√
2

− 1√
2

)
,S =

(
1 0
0 i

)
and T =

(
1 0
0 1+i√

2

)

We get THSH =

(
1+i

2
1−i

2
1√
2

i√
2

)
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Why Kernel?

Assume the feature map ϕ : X → F

For example, ϕ
((

x1
x2

))
=

 x1
x2

x1x2

 ∈ F , where
(

x1
x2

)
∈ X

Figure: Separation may be easier in higher dimensions
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Kernel Methods

Training dataset D = (xi , yi)
N
i=1, where xi is input data and yi is

corresponding teacher data.

Kernel method employs a non-linear map ϕ from the original space to the
higher dimensional feature space: ϕ : X → F ,
i.e., xi → ϕ(xi),
where X is an original space of the data and F is a higher dimensional
feature space.

For two data xi and xj , we define K (xi , xj) = ⟨ϕ(xi), ϕ(xj)⟩, where ⟨·, ·⟩
denotes the inner product on F .
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QML as a Kernel Method

First, data are encoded into quantum states by Uϕ(x)
i.e., y(x , θ) = ⟨0n|U†(x , θ)OU(x , θ)|0n⟩

= ⟨0n|U†
ϕ(x)V

†(θ)OV (θ)Uϕ(x)|0n⟩ {∵ U(x,θ) = V (θ)Uϕ(x)}
= Tr(O(θ)ρ(x)),

where weight vector O(θ) = V †(θ)OV (θ) and feature vector
ρ(x) = Uϕ(x)|0n⟩⟨0n|U†

ϕ(x)

Now the conventional quantum kernel is defined as
Kq(xi , xj) = Tr(ρ(xi)ρ(xj)) = |⟨ϕ(xi)|ϕ(xj)⟩|2, where |ϕ(x)⟩ = Uϕ(x)|0n⟩
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Accuracy Compare

Figure: Comparison between Classical and Quantum Models
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Neural Tangent Kernel (NTK)

Suppose f (xi , θ) is the output of a neural network where θ is parameters in
the network, and xi is the input data.

Now we approximated by the first-order expansion with respect to the
parameters around the initial values:
f (xi , θ) ≃ f (xi , θ0) +∇θf (xi , θ0)

T (θ − θ0), where θ0 is the initial values of
parameters of a neural network.

This approximation allows us to interpret the neural network as a linear
model with a feature map ϕ(x) = ∇θf (x , θ0)

Using this feature map, we define the following neural tangent kernel
(NTK):
Kntk (xi , xj) = ∇θf (xi , θ0)

T∇θf (xj , θ0)
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Quantum Tangent Kernel (QTK)

Now from Kq and Kntk , we define the following quantum tangent kernel
(QTK):
Kqtk (xi , xj) = ∇θy(xi , θ0)

T∇θy(xj , θ0),
where y(x , θ) = ⟨0n|U†(x , θ)O(θ)U(x , θ)|0n⟩
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Numerical Experiment
First one is a circuit where x is encoded only at the first layer as in the
bellow Figure. Ushallow (x , θ) = V (θ)Uϕ(x), where V (θ) is a parameterized
unitary and Uϕ(x) is a quantum feature map to encode data.

Figure: The m-qubit ansatz used for numerical simulations. Uϕ(x) is the quantum feature map for
encoding classical data. U(θ

(i)
j ) ∈ SU(4) is the parameterized unitary of the i-th layer. At the output,

we measure the Pauli Z expectation value of the final qubit.
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Numerical Experiment
Next, in order to increase the non-linearity, we consider a multi-layered
circuit that alternates between data encoding and a parameterized unitary
as shown in the bellow Figure. Udeep(x , θ) = ΠL

i=1V (θi)Uϕ(x),

Figure: Quantum circuit that defines deep quantum tangent kernel. Uϕ(x) is the feature map and
U(θ

(i)
j ) ∈ SU(4) is the parameterized unitary of the i-th layer. To increase the non-linearity of the

kernel, the feature map Uϕ(x) and the parameterized unitary are iteratively applied. At the output, we
measure the Pauli Z expectation value of the final qubit.
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Numerical Experiment

The “ansatz-generated” dataset is generated in the following manner.
Four dimensional random value data xi are inputted into Udeep(x , θ)
consisting of n = 4 qubits and L = 10 layers.

Then, evaluate the expectation value
l(xi , θ) = ⟨0n|U†

deep(xi , θ)Z4Udeep(xi , θ)|0n⟩ with a randomly chosen θ. We
label each xi as 1 and -1 if l(x , θ) ≥ 0 and l(x , θ) < 0, respectively.

Here, generate the 15,000 samples of the four dimensional input data xi
and its label yi . They are splitted into 10,000 training and 5000 test data.
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Behavior of training losses and training accuracies

Behavior of training losses and training accuracies for different number of
layers during training.

Figure: Relative norm change in
the parameters of the quantum
circuit from initial values during
training by gradient descent.
θ(n) is the parameter at the n-th
iteration. θ0 is initial value of the
parameter. Figure: Mean Square Error Figure: Train Accuracy
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Classification accuracy for three types of kernels

Classification accuracy for SVM with three types of kernels. Three SVMs
classify the ansatz-generated dataset generated by a quantum circuit for
deep QTK

Kernel Accuracy
Quantum kernel 0.7842

Shallow quantum tangent kernel 0.7484
Deep quantum tangent kernel 0.812
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The distribution of outputs

Figure: The distribution of outputs of the
quantum circuit with L = 10 layers which can
be interpreted as the conventional quantum
kernel method.

Figure: The distribution of outputs of the quantum
circuit with L = 10 layers beyond the conventional
quantum kernel
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Conclusion

Here quantum tangent kernel (QTK) and deep quantum tangent kernel
which cannot be interpreted as conventional quantum kernel methods

QTK is defined by applying the formulation of NTK to parametrized
quantum circuits.

It imply that deep parameterized quantum circuits with repetitive data
encoding unitary have a higher representation power and better
performance for quantum machine learning than the conventional
quantum kernel method.

Hence, better ansatz constructions and parameter optimization methods
are crucially important.
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